
Solid Mechanics: Non-linear elasticity

In non-linear elasticity we study the constitutive response of materials
When the displacement and deformation are not small. 

We aim to model materials such as elastomers and some biological tissues

From the book: Mechanics of Continuous Media: an Introduction
J Botsis and M Deville, PPUR 2018.
Solutions: https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media

https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media
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Positive definite tensor

It satifies the following relation

It can be shown that the eigenvalues of a positive
Definite tensor are all positive:

For the tensor L with one of its eigenvalue λ and 
and corresponding eigenvector n, we can easily
see that since

Spectral decomposition of a tensor or 
spetral represenation of a tensor

For a tensor L with eigenvalues λ1, λ2, λ3, and 
corresponding eigenvectors n1, n2, n3 .
The orthogonal eigenvectors form a basis for the spectral
decompostion writen as follows:
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Theorem (square root)
For a symmetric, positive definite tensor C with 
eigenvalues       and corresponding eigenvectors nι , 
there exists a symmetric positive definite tensor U 
such that:

and denote it as 

These two tensors have the following spectral form:

λ 2
i

2 =U C  

C   = U

Theorem (polar decomposition)
For a tensor F with determinant det F >0 there
exist symmetric positive definite tensors U and V
and a rotation (an orthogonal tensor with a positive 
Determinant equal to 1) R such that:

These decompositions are unique and  we have:

and      

Representation                       is called right decomposition.
Representation                       is called left decomposition.

F = RU = VR  

T=U F F T=V FF  

F = RU 
F = VR
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Theorem (square root)
For a symmetric ,positive definite tensor C with
eigenvalues and corresponding eigenvectors nι , 
there exists a symmetric positive definite tensor U 
such that:

and denote it as 

These two tensors have the following spectral form:

λ 2
i

2 =U C  

C   = U

Note that 
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The function                 is defined as a scalar function 
of the tensor T and yield a scalar. When T is symmetric 
and the condition:

is satisfied, then              is isotropic of T and is 
represented by:

where the parameters 
are the invariants of T. This is also equivalent to:

where λ1, λ2, λ3, are the eigenvalues of T.  
It can be shown that for the isotropic function 
its derivative with respect to T is is a tensor and given by:

Scalar function of a tensorIsotropic tensor function of a symmetric tensor

By definition an tensor isotropic function f, for which 
the variable is a 2nd order symmetric tensor T , satisfies
the identity:

for any orthogonal tensor Q . 
For a symmetric tensor L the following relation is true:

Rivlin-Ericksen representation Theorem
The last expression can be written in the form
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Deformation gradient tensor We consider a particle in configuration         with

position        and a small neighborhood around it       .  

Its motion is given by,

For a sufficiently small        the motion for each 
particle in      is approximated  by a Taylor series 
around        as follows

where 

and C being a bounded constant.

0X

0X

The tensor  F with components    

is called the Deformation gradient tensor . 

Initial configurations 
at t = 0 and at the 
time t of 

0X
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Deformation gradient tensor

If                         << 1 

with  
or

and for simplicity

Two assure the continuity of the material and 
the existence of continuous derivative the
Jacobian J of F defined as:

should satisfy  the condition:

which ensures the existence of the inverse F-1

of  F with det F = 1/ J.

we use 
to obtain
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Using                           in index form we have:

We can define the square ds o the vector  dx as

From this expression we can define the following tensor:

Which is defined as the symmetric 
right Cauchy-Green deformation tensor.

It is a metric tensor in that it can me used to calculate 
the length of dx as a function of the components dX.

We can also calculate dX in terms of dx as follows:

with:

and

we define the tensor:

or   

is the inverse of the symmetric left Cauchy-Green 
deformation tensor   c.

1 1X F x  ;  m mi id d dX F dx− −= =

( ) 11 1 1T
mi mj mjim

F F F F
−− − −=

Deformation tensors
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Consider the tensor U with 
eigenvalues                                  
and eigenvectors  Using the relation

The deformation tensor           has         for eigenvalues   
and                                    for eigenvectors 
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Using the polar decomposition theorem, we can express
the deformation gradient tensor F as follows:

right polar 
decomposition

left polar 
decomposition

The three tensors are unique
R expresses a rotation; U and V are called
the right and left stretch tensors:

when R = I

we have pure  deformation.

GEOMETRIC INTERPRETATION  

the configurational change in the neighborhood 
of the material particle is obtained by the transformation
of vector dX to a vector UdX by a pure deformation U
followed by a local rotation R.
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Deformation tensors

The deformation tensors can also be expressed in terms of
tensors U and V by applying the polar decomposition: 

1: the right Cauchy-Green deformation tensor:

2: the left Cauchy-Green deformation tensor:

3: the Green-Lagrange strain tensor:

4: the Euler-Almansi strain tensor:

Note that the rotation R does not affect the 
deformation and strain tensors.
(very important in continuum mechanics)

Also when  F = Q it is a rigid body motion:

From                     we have:

without loss of generality we set:

Because they are both orthogonal tensors

and similarly                                      .                        

F = RU
1 1 1Q = RU     R Q = R RU     R Q = UI− − −⇒ ⇒

Q = R

0  U = I      E = ⇒ ⇒

0V = I      e = ⇒
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Description of a linear element in two configurations

Using F and the deformation tensors we can express
The change in length of a linear element:

A linear element    in the reference configuration
has a norm: 

After the motion                                  it becomes the 
element         with norm: 

Using                           and                          we obtain:

.

is the stretch ratio at X in the direction N
2C U=

.

Linear and surface elements 
in the        and       of the 
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Description of the angle between two linear elements
in two configurations

For two linear elements    and in the 
reference configuration that intersect with angle 
we have: 

After the motion these two elements become         
and         that intersect with angle     :

Using                          ;                       ; 2C U=Nx and Ny are unit vectors along X, Y

The difference                 is attributed to shear.

Linear and surface elements 
in the        and       of the 
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Description of volume element between 
two configurations
Consider three non-coplanar linear elements:

,       , and        . We have:

In the deformed configuration, the three linear 
elements become                 and        and the volume is:

We know that                                .  

Linear and surface elements 
in the        and       of the 
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Description of surface element between 
two configurations (Nanson’s formula)

To express the change in a surface element we 
start with the volume element in the refererence
and deformed configurations:

using

Relation                                                   becomes

or

which is valid for any arbitrary vector  

or

known as Nanson’s formula

Linear and surface elements 
in the        and       of the 
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Objectivity of kinematic parameters
Consider an event viewed by two observers       and       , 
and noted respectively by              and                    . 

The motion between two observers is a function of
space and time (effects due to relativity are negligible).

The two observers measure the same distance between 
two events as well as the same time intervals between 
events. 

The most general transformation between the two 
observations of the same event is given by:

where

Here             is an orthogonal tensor with time as a 
parameter,            is a vector and      is a scalar.

The same observation at P (experiment) seen by
two observers in the corresponding reference
frames at the same time. For the observer at  
the vector position is x. For the observer at  
we must take into account the rotation of  
with respect to      ..

Two observers move 
in two reference frames
following an event at P.
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Objectivity of kinematic parameters
The motion of the body       described by          
according to the first observer, is described by the second 
observer as                       .

The two descriptions are related as follows:

To examine the ramifications of this relation we consider
two events reordered by:

:                ,                ;        :                         ,      

The relative positions of these events are:

:                                ;        :   

The transformation                           is that of a rigid body. 

Two observers move 
in two reference frames
following an event at P.
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Objective fields 

A vector field transformed according to:

is called spatially objective vector field.

Using this definition we can define a spatially 
objective 2nd tensor filed.

Two spatially objective vectors v and w
seen by the observer       , are related by:

. 

Since they are objective, the observer         sees

and                             .

In summary

A scalar quantity         is objective if and only if (iif)

A vector quantity        is materially objective iff

A vector quantity         is spatially objective iff

A tensor quantity       is materially objective iff

A tensor quantity       is spatially objective iff

A tensor transformed according to the last relation
is spatially objective tensor or independent of the 
reference frame.

v
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Objectivity of velocity and acceleration

We have for the velocity 

and acceleration    

The definitions of the velocity and acceleration are 
relative and inextricably linked to the observer.

For the deformation gradient tensor we have

and 

Starting from the definitions of the corresponding
Tensors it can be shown that:
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Piola-Kirchhoff stress tensors

The Cauchy stress tensor is expressed with respect 
to the current configuration        i.,e.  it is the real stress.

The principles of momentum and angular momentum
are formulated with respect to the current configurtion.

Problems in solid mechanics require a formulation with
respect to the initial configurtion . 

This is because: (a) it is difficult to know the deformed 
condition of a solid beforehand, (b) it is more convenient 
to analyze the experimental response of a solid with 
respect to its undeformed configuration.

There is not simply a change of variables in the equations
of motion and the Cauchy stress components using:

Measurements of stresses in the undeformed
configuration have been proposed for the study
of problems in solid mechanics.

These are the first and second 
Piola-Kirchhoff stress tensors.
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The Cauchy stress vector acting in  
and the first         and second        
Piola-Kirchhoff stress vectors acting in 

Here                      is the Cauchy stress vector acting on the actual 
surface element              at x. 

To this vector we associate the vector 
called the first Piola-Kirchhoff stress vector, to the 
corresponding reference surface
element             , and related to                     as follows:

and        are positive.  Thus,  T and t have the same direction
but            and         are not generally the same.  

Note that the stress vector is not real (often called pseudo-stress). 

Using Cauchy’s relation                      

and Nanson’s formula

( , , ) ( , )x n xσ=i ij jt t t n
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The First Piola-Kirchhoff stress tensor defined as:

Using the symmetry of the Cauchy’s stress tensor                 it is shown below that:    

( )

P = F  P F = F F  = 

PF PF PF =FP  

T T T T

T

TT T T T

J J J
J J

− −⇒

=

⇒ = ⇒

σ σ σ

σ σ

T=σ σ

Piola-Kirchhoff stress tensors
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Objectivity of the tensor σ

We consider Cauchy’s relation                                                   
as seen by two observers         and       . 

We assume that vectors t and n are objective and 
are transformed as:

From                          we have

We multiply                   by Q  to obtain: 

Comparing the two last results  we have:

the Cauchy’s stress tensor is objective.

( , , ) ( , )x n xσ=i ij jt t t n

* *;t Qt      n Qn = =

t nσ=

To check the objectivity of P we start with

and use  

* *; ;F QF      =     P = F TJ J Jσ −=

The first Piola-Kirchhoff stress tensor
is not objective.

Objectivity of the tensor P
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The Cauchy stress vector       acting in  
and the first         and second        
Piola-Kirchhoff stress vectors acting in 

Here                      is the Cauchy stress vector acting on the actual 
surface element              at x. 
To this vector we associate the vector called the second 
Piola-Kirchhoff stress vector, to the  corresponding reference 
surface element                , and related to                       as follows:

Here      expresses the contact force per unit reference surface
transformed by           : Expressing 

We can define the second Piola-Kirchhoff tensor       given below:

Using Cauchy’s relation:                      

and Nanson’s formula:

( , , ) ( , )x n xσ=i ij jt t t n
which is symmetric 
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It is important to check what are the effects of the 
Kinematic linearization on the three stress tensors.

From the relation:

We express the tensor in index form as:

Using:                                        ;                                              

and 

Similarly the second Piolla-Kirchhoff stress tensor:

takes the form in index notation:

1S F P−=

For the Cauchy stress tensor, we express it using:

as   

P = F TJσ −

Linearization of the stress tensors
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Using ;                                              

;

If we neglect the terms with the displacement gradient on 
the expressions:

Linearization of the stress tensors
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Two approaches to constitutive equations for isotropic elastic material:

1. Cauchy elasticity, or Cauchy elastic material:
It is based on purely theoretical considerations and
without any reference to thermodynamics. 

We arrive at the general form                              (                                              )
and use the Rivlin - Ericksen representation theorem: 

       estress and strainσ

where

are scalars of the invariants of the Euler-Almansi strain tensor 

( )e= Kσ
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Two approaches to constitutive equations for isotropic elastic material:

2. finite hyperelasticity, or hyperelasticity or Green elastic material: 
It is based on the hypothesis of the existence of an energy function.

From thermodynamic considerations, and this function we define 
the constitutive equation as: 

P F TJ −= σ

Energy function

Deformation gradient tensor
First Piola-Kirchhof
Stress Tensor

Recalling that 
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Constraints on the energy function:

It should be independent of the reference frame.

For two observers 

We replace                       and consider   

This is the necessary and sufficient condition for 
the objectivity of  the strain energy function
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We formulate constitutive equations using the metric tensor       and not   

It is necessary to express                             as a function of 

Taking into consideration                                              it can be shown that

Since both                                          are symmetric   
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Using                                                

the original expression                               becomes    

1S F P−=We can also use the second Piola-Kirchhoff tensor from 

This is more convenient because 
it does not contain        and       tensors 
since they are not symmetric

P F
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Isotropic Hyperelastic Materials

In the case of isotropic medium, the strain energy function 
should satisfy the condition,

This equality implies that              is an isotropic function of
the symmetric tensor      . 

Because of the isotropy, the energy function can be written in terms 
of the principal invariants of      (                       are the principal values). 

invariants of
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Isotropic Hyperelastic Materials

With 

and

we need

with  
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Isotropic Hyperelastic Materials

With 

and 

( )2 C
C

∂Φ
=

∂ 1 2 3 1λ λ λ= = =

0S =      C = I   ⇒

1 2 33, 3, 1    I I I= = =

At the reference configuration
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Isotropic Hyperelastic Materials

1=J FSF T−σ

left Cauchy-Green deformation tensor

right  Cauchy-Green deformation tensor
They have the same principal stretches
Thus the corresponding invariants are the same.

Consequently, when the energy function of a
certain material is known, the constitutive 
response is established by one of the two. 

Introduce S in
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Isotropic Hyperelastic Materials

For an isotropic material, the strain energy function can be expressed also in terms  of the principal stretches:

We start again from 

and differentiate

With

principal values of

corresponding principal directions



Solid Mechanics: Non-linear elasticity

In terms of the principal values 

Isotropic Hyperelastic Materials
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Recall: For isotropic Hyperelastic Materials:

We have the two constitutive Equations

in   1=J FSF T−σ

When the energy function of a certain material is known, the 
constitutive response is established by one of the two relations. 



Solid Mechanics: Non-linear elasticity

Incompressible Hyperelastic
Isotropic Materials

The volume remains unchanged during 
deformation called isochoric motion.

Examples: rubbers, certain soft biological 
tissues
Incompressibility condition:

Or the third invariant of C or c

The Constitutive Equations become

It is a constant, associated with pressure 
(does not produce work) and is calculated 
from equilibrium and BC.
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Incompressible Hyperelastic Isotropic Materials

It is useful to express the principal
stresses as a function of the principal
stretches. 

The equation 

becomes

With the conditions

Note: In isotropic materials, the principal 
directions of stresses and the principal 
stretches coincide
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Incompressible Hyperelastic Isotropic Materials

Forms of Strain Energy Functions

The constitutive equation is specified once the energy function is known. 

The mathematical conditions imposed until now are based on objectivity
and isotropy. 

Other requirements can come from the type of boundary value
problem, the experimental configuration, and the uniqueness of the solution. 

In general, the explicit definition of the energy function is based on methodological
developments, experimental data, and/or the material microstructure.

For incompressible material                                                     the energy function is
expressed as follows

In practice a small number of
terms is required.

The material parameters are calculated 
by detailed experimentation and carful 
identification.

The larger the number of terms the 
process becomes more difficult. 
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Incompressible Hyperelastic Isotropic Materials

Forms of Strain Energy Functions

Neo-Hookean model

Two simple forms of the energy function Mooney-Rivlin Strain Energy Function

The model has its origin in the 
statistical theory of rubber elasticity. 
(good for stretch ratios less than 2)

Important in the development of non-linear
elasticity
(good for stretch ratios up to 4)

n: number of polymer chains per unit volume
: Boltzmann’s constant

T : absolute temperature
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Incompressible Hyperelastic Isotropic Materials

Example: simple stress states 

1:Biaxial stretch

We have two independent stretches

Fro the incompressibility condition

Stresses                           ,

Introduce                       in
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Incompressible Hyperelastic Isotropic Materials

Example: simple stress states 

2: Equibiaxial Stretch

We have                               ,

and   
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Incompressible Hyperelastic Isotropic Materials

Example: simple stress states 

3: Uniaxial Stretch

We have                   , and
, 
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon Based on the spherical symmetry we have

From equilibrium 

Stretch ratio

Incompressibility condition 
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon

Neo-Hookean model

Stresses 

Pressure 
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon
Mooney-Rivlin model

Stresses 

Pressure 

with
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon
Mooney-Rivlin Model 

Neo-Hookean Model 

Neo-Hookean Model  
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Incompressible Hyperelastic Isotropic Materials

Forms of Strain Energy Functions

Ogden’s Model

and      are constants obtained
From experimental data and identification 

This model gives very good results for when N=3 
(or higher).

It reduces to Neo-Hookean with 

We obtain the Moonley-Rivlin with 
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