Solid Mechanics: Non-linear elasticity

In non-linear elasticity we study the constitutive response of materials
When the displacement and deformation are not small.

We aim to model materials such as elastomers and some biological tissues

From the book: Mechanics of Continuous Media: an Introduction

J Botsis and M Deville, PPUR 2018.
Solutions: https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media
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Positive definite tensor

Spectral decomposition of a tensor or
spetral represenation of a tensor

It satifies the following relation

Yo € E3j v-Lv >0 For a tensor L with eigenvalues A, A, A5, and
corresponding eigenvectors n,, n,, n, .

The orthogonal eigenvectors form a basis for the spectral
decompostion writen as follows:

3
I — Z i @m;
i=1

It can be shown that the eigenvalues of a positive
Definite tensor are all positive:

For the tensor L with one of its eigenvalue A and
and corresponding eigenvector n, we can easily
see that since

In=n = n-In=)\>0
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Theorem (square root)

For a symmetric, positive definite tensor C with
eigenvalues ﬁiz and corresponding eigenvectors n,,
there exists a symmetric positive definite tensor U
such that:

U'=C

and denote it as \/E =U

3
1—=1

3

1=1

These two tensors have the following spectral form:

Theorem (polar decomposition)

For a tensor F© with determinant det F >0 there
exist symmetric positive definite tensors U and V
and a rotation (an orthogonal tensor with a positive
Determinant equal to 1) R such that:

F=RU=VR

These decompositions are unique and we have:

U=~F'F and V=+FF'

Representation JF = RU is called right decomposition.
Representation JF = J/R is called left decomposition.
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Theorem (square root)

For a symmetric ,positive definite tensor C with U2 - UU =
eigenvalues ﬁiz and corresponding eigenvectors n,,

there exists a symmetric positive definite tensor U ’ 5 _ _
such that: - Z A;(n; @ng)(ng @n;) =
i=1
U'=C

3
— }\f(ni ®n;) =C
and denoteitas +C =U ;

These two tensors have the following spectral form:
Note that

0 if i # j

3
1=1 (ﬂ*i & ﬂ,?_'_) if 2 = j .

— (n; @n;)(n; @n;) = {

3
1=1
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Isotropic tensor function of a symmetric tensor

By definition an tensor isotropic function_f, for which

the variable is a 2"d order symmetric tensor T, satisfies
the identity:

Qf (1)Q" = £(QTQ")

for any orthogonal tensor Q.
For a symmetric tensor L the following relation is true:

L=f(T)

Rivlin-Ericksen representation Theorem

The last expression can be written in the form

L = o (I.(T), Io(T), I3(T)) I + 1 (1.(T), I2(T), I3(T)) T
+ 2 (11 (T), L(T), Is(T)) T,

w; (1= 0, 1, 2) are scalar functions
of the invariants of T

Scalar function of a tensor

The function W(T') is defined as a scalar function

of the tensor T and yield a scalar. When T is symmetric
and the condition:

W(T) =W(QTQ")

is satisfied, then Y(T) is isotropic of T'and is
represented by:

W(T) = &(L(T). L,(T). L(T))
where the parameters [ (T"). [o(T"), I5(T)

are the invariants of 7. This is also equivalent to:

where A, A,, A5, are the eigenvalues of T.
It can be shown that for the isotropic function W(T)
its derivative with respect to T is is a tensor and given by:

S oW
AN,

oW

oT £
=1

n,; (039) n;
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Deformation gradient tensor

Xy, 19

Initial configurations
att=0and at the R,
time t of B

X, 2.
v The tensor F with components
IXi
Fij — —
0X;

is called the Deformation gradient tensor .

We consider a particle in configuration K with
position X° and a small neighborhood around it . .

Its motion is given by, * = x (X, 1)
For a sufficiently small }. the motion for each

particle in )/ is approximated by a Taylor series
around X" as follows

(Xj = X7) + o(IIX - X°|*)

0 (I1X - X7 ~ X - X7+

and C being a bounded constant.
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Deformation gradient tensor Two assure the continuity of the material and
the existence of continuous derivative the
If || X — XD|| <<1 Jacobian J of F defined as:
v
r; = Xi(Xg. 1) J = det (ﬁ) = det F
dY; J
= v; (X0 t) + X, — XY+ o(1x — XY?
(X t) + 0X; | o ({5 =5+ 0 ) should satisfy the condition:
. 0 0 -
or dae = FdX which ensures the existence of the inverse F*!
O of F withdet F=1/J.
and for simplicity F; = ——
PREY 1 = 99X,
) U, we use
Fij = 05 + < to obtain
{}Xj ' :ITZX(X,?.L-):X—FU(X,IL.)
Y. D A —1
ppt= 05, 0w g On w=xT (@) ()
de ()Ll?j (_'}Xj
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Deformation tensors

Using dax = F d X inindex form we have:

CE;I.’--;__ = F? g d}(j

We can define the square ds o the vector dx as

ds® = ||nf£:;.~f:\|:2 = dx,, dr,, = F;Fp,; dX; dX;

From this expression we can define the following tensor:

Cc=F'F=(F'F)" Cii = FiF;

Which is defined as the symmetric
right Cauchy-Green deformation tensor.

It is a metric tensor in that it can me used to calculate
the length of dx as a function of the components dX.

We can also calculate dX in terms of dx as follows:
with:

_ -1 . _ -1
d@X =F'dx ; dX =Fdx,

dS* = ||dX||* = dXp, dXp, = F,,; F,} da; dx,
1
and Fn;.an;jl = (FT) Fn;jl

im

we define the tensor:
C—l _ F_TF_l _ (F—TF—l)T
or 1 — p—1lp-1

1] mi > myj

is the inverse of the symmetric left Cauchy-Green
deformation tensor c.
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Consider the tensor U with
eigenvalues \; (i = 1,2, 3)

and eigenvectors A; Using the relation

_ 5T _ T 172
UA;, =\ A, (no sum over 1) C=r i UR RU =U

U is symmetric and positive definite
CA, =)\ A, no sum over 1
the A\, are real and \; > 0 Lo ( )

U=MAT @A + A ® Ay + \3A3 R A3 l
) . The deformation tensor C' has )\12 for eigenvalues
with A.zi -Aj — O?;j and A, (i = 1,2,3) for eigenvectors
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Using the polar decomposition theorem, we can express
the deformation gradient tensor F as follows:

F=RU=VR

left polar
decomposition

right polar
decomposition

The three tensors are unique
R expresses a rotation; U and V are called
the right and left stretch tensors:

whenR=1T== F = U =V

we have pure deformation.

GEOMETRIC INTERPRETATION

de = FdX w=) dxr= RUdX

the configurational change in the neighborhood

of the material particle is obtained by the transformation
of vector dX to a vector UdX by a pure deformation U
followed by a local rotation R.
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Deformation tensors

The deformation tensors can also be expressed in terms of

tensors U and V' by applying the polar decomposition: Note that the rotation R does not affect the
F-—RU~-=VR deformation and strain tensors.
(very important in continuum mechanics)

v yY

1: the right Cauchy-Green deformation tensor:

C—-F'F-—URTRU = U? Also when F = Q itis a rigid body motion:
2: the left Cauchy-Green deformation tensor: From F=RU we have:
c=FF' =VRR'V' =V~ Q=RU = R'Q=R'RU = R'Q=1IU
cl=FTF'=Vv—2. without loss of generality we set:
3: the Green-Lagrange strain tensor: Q=R
1 1 Because they are both orthogonal tensors
)
E=5C-D=5U"-I) ~ U=I = E=0
4: the Euler-Almansi strain tensor: and similarly V=1 = e=0.

| o _2
825(1—(31):5(1—‘/ )



Solid Mechanics: Non-linear elasticity

0 -
€] X, 1

€3

dX = N|

Linear and surface elements
in the Ro and R of the B

|de|>  dX-CdX

 dX[dX])

‘ ~ N-CN = \!
[ X[ "

AN is the stretch ratio at X in the direction N

Y=’

Jdall
x|

= |[UN|| = Ax.

(N-U?N)"? = (UN -UN)"/2 =

Description of a linear element in two configurations

Using F and the deformation tensors we can express
The change in length of a linear element:

A linear element dX in the reference configuration
has a norm:

|dX | = (dX - dX)'/?

After the motion @ = x(X,t) it becomes the
element dx with norm:

|dx| = (dz - dx)'/?
Using dee = FdX and C — F1 F we obtain:

|dz|> FdX-FdX

lax|]> fldx|]?
_dX-F'FdX dX -CdX
|4 X1]* ld.X ||
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Linear and surface elements
in the Ro and R of the B

0 -
€] X, 1

€3

dX = N,|[dX| dY = N, |dY ]|

N, and N, are unit vectors along X, ¥
|FdX| = (FdX -FdX)"/? =(dX - CdX)"/?

e

The difference ® — @ is attributed to shear.

N,-CN,
(N, -CN,)'/2(N,-CN,)'/2

cosf =

Description of the angle between two linear elements

in two configurations

For two linear elements d.X and dY inthe
reference configuration that intersect with angle @
we have:

dX - dY
[ X ||

cos ©® =

After the motion these two elements become dx
and dy that intersect with angle ¢ :

dx - d
) COSO = G
ldz|[ ||dy|

Using de = FdX;C=F'F; C=U"

i

. FdX -FdY dX -F'FdY
COS = —
|FdX||FdY| ||FdX||FdY|
_ dX-cdy
|FdX| || FdY|
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€3

Xy, 13

Xy, 29

O

Linear and surface elements
in the Ro and R of the B

-

e .
1 X, 1

dv=det FFdV =.JdV

Description of volume element between
two configurations

Consider three non-coplanar linear elements:
dX,dY,and dZ.We have:
dV =dX - (dY xdZ) >0

In the deformed configuration, the three linear
elements become dx, dy and dz and the volume is:

dv =dx - (dy x dz)

We know that dx; = F;; d X .

!

d:Ifl dyl d2:1
dv=det| dro dys dzo =
Fljde Fldej Fldej
=det| Fy;dX; Fy;dY; Fy;dZj

FyydX; FydY; FydZ,
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){2. Iy

O

Linear and surface elements
in the Ro and R of the B

€3

X, 1

nds=JF TN dsS

Description of surface element between
two configurations (Nanson’s formula)

To express the change in a surface element we
start with the volume element in the refererence
and deformed configurations:

dV =dX'-N dS dv =dx’ -nds
using dao = F dX

Relation dv = det F'dV = .JdV becomes

dv=FdX'" -nds=.JdX"-NdS

or

o K——— (FTnds—JNdS)-dX’:O

ds = JF~TN ds

known as Nanson’s formula

which is valid for any arbitrary vector X’/




Solid Mechanics: Non-linear elasticity

Objectivity of kinematic parameters

1')
X~ Two observers move

/ /L in two reference frames
following an event at P.

! I)z

O / 124
();/ :I'i

Consider an event viewed by two observers R and R*,
and noted respectively by (113 t) and (il?*,. t*) :

The motion between two observers is a function of
space and time (effects due to relativity are negligible).

The two observers measure the same distance between
two events as well as the same time intervals between
events.

The most general transformation between the two
observations of the same event is given by:

The same observation at P (experiment) seen by
two observers in the corresponding reference
frames at the same time. For the observer at R.
the vector position is x. For the observer at R*
we must take into account the rotation of R
with respect to R*.

where t¥ =1 — «

x* = Q1) + eft)

Here (Q(1) is an orthogonal tensor with time as a
parameter, ¢(1) is a vector and « is a scalar.
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Objectivity of kinematic parameters

Ol

Two observers move
in two reference frames

~._ following an event at P.

O

~
~
~
~
~
~
~
~

A ¥ 5

oy

]| = ||| G

ut-u”

—u (Q"Qu=uu

= (Qu) - (Qu) p

The transformation ™ = Qu ‘ is that of a rigid body.

The motion of the body 3. described by X (X, 1)
according to the first observer, is described by the second
observeras X" (X, %),

The two descriptions are related as follows:
X (X, 17) = Qt)x(X, 1) + c(t)

To examine the ramifications of this relation we consider
two events reordered by:

R (mlt) ’ (Q?’Qt) ; R*: (iBTf) (ﬂl‘;f)
The relative positions of these events are:

*—

R,:u:mg—wl;R*;u*:mQ

4
u*:Qul

kS
L9
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Objective fields H w' = Qw = QLv = QLQT'U*

v* = Qu 4
L — QLQT

A vector field transformed according to:

u™ = Qu |is called spatially objective vector field. '

A tensor transformed according to the last relation
Using this definition we can define a spatially : is spatially objective tensor or independent of the
objective 2" tensor filed. reference frame.
Two spatially objective vectors v and w In summary

seen by the observer R , are related by:
[ %

A scalar quantity ¢ is objective if and only if (iif) @™ = o
w = Lwv.
A vector quantity f is materially objective iff _f* = f:
Since they are objective, the observer R* sees

. . ) . . . * —_— #
A vector quantity f s spatially objective iff f =Qf:
w* = Qw and w* = L™v*
A tensor quantity 1 is materially objective iff 1"~ = T

A tensor quantity T is spatially objective iff 1~ = QTQT
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Objectivity of velocity and acceleration

For the deformation gradient tensor we have

We have for the velocity V(X.t) = x(X.1) F*(X,t*) = Ox* (X, 1)
| | — 0X
and acceleration AX.t) = x(X,t) Ox*(X.t) Ox(X,t)
| T ox(X.f)  0X
X (X t7) = Q(t)x(X, 1) + () _ Q)((t()FE)z’ £)

$

V(X 17) = QUVI(X.1) + &(t) + Q(t)x(X. 1) I = det F*(X.4%) = det F(X.£) = J

ANX 1) = XX, 1) ) . Starting from the definitions of the corresponding
Q(1)x(X, 1)+ ¢(t) + Q(t)x (X, 1) Tensors it can be shown that:

+2Q(H)V (X, 1), C*=C E*=E
' =QcQ" e =QeQ"

and

‘ The definitions of the velocity and acceleration are

relative and inextricably linked to the observer.
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Piola-Kirchhoff stress tensors

The Cauchy stress tensor O . is expressed with respect
to the current configuration 7 i.,e. it is the real stress.

The principles of momentum and angular momentum
are formulated with respect to the current configurtion.

Problems in solid mechanics require a formulation with
respect to the initial configurtion RD-

This is because: (a) it is difficult to know the deformed
condition of a solid beforehand, (b) it is more convenient
to analyze the experimental response of a solid with
respect to its undeformed configuration.

There is not simply a change of variables in the equations
of motion and the Cauchy stress components using:

x=x(X.,t)

Measurements of stresses in the undeformed
configuration have been proposed for the study
of problems in solid mechanics.

These are the first and second
Piola-Kirchhoff stress tensors.
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N
K
Xo, T T
o Here t(x,t,m) isthe Cauchy stress vector acting on the actual
| surface element n ds atx.
RQ n
| : To this vector we associate the vector T'(X,7, N)
called the first Piola-Kirchhoff stress vector, to the
d‘? corresponding reference surface
X
u element N'dS, and related to t(x.t. n) as follows:
82 g
T R
T(X.t.N(X))dS =t(x,t.n(x,t))ds
0 >
‘. el/ A 4 .S and ds are positive. Thus, T and t have the same direction
The Cauchy stress vector t acting in T but ||7'|| and [|t|| are not generally the same.
and the first T' and second K
X;, 13 Piola-Kirchhoff stress vectors acting in R || Note that the stress vector is not real (often called pseudo-stress).
Using Cauchy’s relation Z,(X,f,n) = o (x,f)i’lj T(X.,t,.N)dS = t(ﬂ.‘:j t. n) ds = rJ'(:I:, t)‘n ds

[I— B r
and Nanson’s formula nds = JF~ T N dS = J(X,t)o(x(X.t).t)F " NdS
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Piola-Kirchhoff stress tensors

T(X,t.N)dS = t(x.t.n)ds = o(xz.t)nds
= J(X.,t)o(x(X.t),t)F TN dS

mmw) 7(X,t,N)=P(X.t)N

The First Piola-Kirchhoff stress tensor defined as:
P(X.,t)=J(X t)o(x(X,t),t)F"

Using the symmetry of the Cauchy’s stress tensor o = o’ itis shown below that: PFT — FPT

P=JoF "= PF'=JocF 'F' =Jo
Jo=Jo'

— PFT = (PFT) — PFT=FP’
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Obijectivity of the tensor o Objectivity of the tensor P
We consider Cauchy’s relation ,(X,f,n) =0, (x,0)n, To check the objectivity of P we start with
as seen by two observers R and R*. e T . s
PF =.Jc
We assume that vectors ¢ and n are objective and and use
are transformed as:
t =0t ; n =0n F'=QF ; J ' =J ; P=JoF"

From t* = g*n*wehave Qt = o*Qn .
Otm ol P (QF)" = 1QoQT

We multiply ¢ =con by Q toobtain:Qt = Qon PFTQT = QJoQT = QPFTQT
Comparing the two last results we have: P = QP.
o =QoQ’ l

The first Piola-Kirchhoff stress tensor
EEE)  the Cauchy’s stress tensor is objective. is not objective.
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” B!
K
Xo, @ T
v Here t(x,t,m) isthe Cauchy stress vector acting on the actual
I surface element 1 ds atx.
Ro n To this vector we associate the vector called the second
¢ Piola-Kirchhoff stress vector, to the corresponding reference
A surface element [N (/.S , and related to t(x,¢,n) as follows:
ﬂ * . K(X,t,N)dS=F X, t)t(x(X,1), t, n(X 1)) ds
€
h Here K expresses the contact force per unit reference surface
0 7 . transformed by F . Expressing
y 1 I
y The Cauchy stress vector t acting in K. K(X t, N) - S(X’t)N
and the first T’ and second K We can define the second Piola-Kirchhoff tensor S given below:
X;, 73 Piola-Kirchhoff stress vectors acting in RU l

Using Cauchy's relation: £,(X,£,1#) = 0 (X, ), [S(X.1) = J(X.)FH(X.t)o (x (X ). ) F T (X 1)
= F 1 (X.t)P(X,t). which is symmetric

and Nanson’s formula: nds = JE LN dS
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Linearization of the stress tensors

It is important to check what are the effects of the
Kinematic linearization on the three stress tensors.

From the relation:
PFT — FpT

We express the tensor P in index form as:

Pk = Frni(Pyj)" (Fjr) ™" = FniPjiFy !

Similarly the second Piolla-Kirchhoff stress tensor:

S=F'P

takes the form in index notation:

U,
OXy

U,
X},

Sij:Figlpkj:(fjik_ )ij:Paj_ij

For the Cauchy stress tensor, we express it using:

P=JoF"'

as 045 = -]_1P3';C(ij)T — J_le'ijk

. i U, -1 . O
Using: F.. = §,. i, Pl .
j = 045 + &Xj i 04 j a;tfj
- = O(c?) ~
and 0X; di +O(e7) du
AU, 1 ou,, au,,, AU,
Pk = Pem — P Pri—— — Pj;
mk km jm a){j + Lki a)(i ji a)f;; a)(j
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Linearization of the stress tensors

Tij = J_lpz'k(ij)T = J_lpiijk
ou; ;
0X, .Fw = 045 —
Fij =04 + 0(5) F 't =0;—O(c

J=~1 + O(=)

!

O

Using

o —J1p. (5. oU;
Tjj — - ik (f_)){k
oU
= J (P P; ~ P} P;
( J T k d){k) J T k

81'3'

)

oU
OX},

If we neglect the terms with the displacement gradient on
the expressions:

Pmk = Pkm — Pjm g[;{ + i C()){j{ ﬁ’(;{;g g[;fj;
Sij = Fy' Prj = (ﬁik - ggk) P = Fig = g g;k
oij = J ' Py (53':‘9 + ;j%g)
= J Y(P;; + Py 3;,%) Pij + Fix gi'k

!

Pk = Prm Sij = Py 045 = Dij




Solid Mechanics: Non-linear elasticity

Two approaches to constitutive equations for isotropic elastic material:

1. Cauchy elasticity, or Cauchy elastic material:
It is based on purely theoretical considerations and
without any reference to thermodynamics.

We arrive at the general form O = K (e) (stress o and strain e)
and use the Rivlin - Ericksen representation theorem:

o =ko(li(e), Ia(e), Izs(e)) I + ki (I1(e), Ia(e), Is(e))e
+ko(Ii(e), Ia(e), I3(e))e”

where

ky = ky(1i(e), Io(e). I3(e)) p=0,1,2

are scalars of the invariants of the Euler-Almansi strain tensor
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Two approaches to constitutive equations for isotropic elastic material:

2. finite hyperelasticity, or hyperelasticity or Green elastic material:
It is based on the hypothesis of the existence of an energy function.

From thermodynamic considerations, and this function we define
the constitutive equation as:

/ Energy function
First Piola-Kirchhof ‘ C)W(F)
Stress Tensor ] YA — -— Deformation gradient tensor
OW (F
Recallingthat P =JoF ™ | > — J! C)é‘ )FT.
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Constraints on the energy function:

It should be independent of the reference frame.

mmm) For two observers  W(F') = W(F*) —

We replace F' = RU and consider (Q = R

2

W(F)=W(R'RU)=W{U) |7 _ /2

the objectivity of the strain energy function

This is the necessary and sufficient condition for l W

W(QF) .
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We formulate constitutive equations using the metric tensor ' and not F’

mmmmm) | It is necessary to express OW(F')/OF asa function of

o~ IW(F) . OW(C)
W(E) = W(U) = W(C) mmmy 205 = 205 €

Taking into consideration (' = CT — FTF it can be shown that

T —
OF oC F OF oC

(8W(F) )T _,OW(C) OW(F) _ ., OW(C)

Since both C, 8W(C)/GC are symmetric
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—

: OW(F) __OW(C)
Using R 2F 5C
the original expression P = C)W(F) becomes
$y
OW(C)
P =2F .
oC

We can also use the second Piola-Kirchhoff tensor from § = F'p

3

C)W(C) Th|s is more con\{en|ent because
‘ it does not contain P and F tensors
oC since they are not symmetric

S =2
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Isotropic Hyperelastic Materials

In the case of isotropic medium, the strain energy function
should satisfy the condition,

W(C) =W(QCQ").

This equality implies that W'(C) is an isotropic function of
the symmetric tensor (.

Because of the isotropy, the energy function can be written in terms
of the principal invariants of C (A%, \3, \3. are the principal values).

[(C) =M + A3+ )3

invariants of C'™ 1) = \2)2 + A2)2 + A2\2 =) W(C) — O(1,(C), I(C), I3(C))

[5(C) = A3A3);5.
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Isotropic Hyperelastic Materials

W (C)
With S = 2—
oC
and W(C) = @(L(C), (C), 1x(C) | |98(C) _ o® ., (00 00 0
oC 015 oI, 015 O1o

we nid f
ob(C) 0P oI . ob I, . ob I,

oC 0 oC 0I, 0C  0I; OC

d[l B 8[ B C?I?, B -1
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At the reference configuration

J
S=0 = C=1

Isotropic Hyperelastic Materials

o 2@179(0) _,0%(C)

With C)C GC ﬂ’I:/,Lz:ﬂ”s:l
9B (C) ob O O R o+ 1. =3, [,=3, [,=1

°C :IBEC l+(ﬁ+[1£>lr—%c- 1 21 3

Y01, oI, ol

odb 0P 0P OP Ob ob  OP
S=2(I3— Cl+(—+l )I——f C‘) — +2 =0.
( ’ o1, oI, oL oL
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Isotropic Hyperelastic Materials

Consequently, when the energy function of a ob Od 0P 0P
certain material is known, the constitutive . 5 =2 (ISEC T C)—Il T Il% I - @C
response is established by one of the two. i
Introduce S in
-1 T
o=J FISF
b o
P P 0P obd .
o=2J""{Isc)- I+ |- + 1 (c)- c— - ¢
( 3 )ejjg(c) (a}fl(c) 1 )Ufg(c)) Ol (c) )
¢ left Cauchy-Green deformationtensor | | They have the same principal stretches Y AP ERDYS

C right Cauchy-Green deformation tensor | Thus the corresponding invariants are the same.
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Isotropic Hyperelastic Materials

For an isotropic material, the strain energy function can be expressed also in terms of the princifal stretches:

OW(C) . |
oC W(C) = d(A1, A2, A3)

We start again from —— S =2

—

OW(C) Do OXZ 1 Do OX

oC  OA2 9C 2\ O\ OC \

and differentiate —

N2 /
With— — = A; ® A, A;, @ A;
e {)C Z I\, c)A
)\12 principal values of C', .
1 ¢ o
A-g' corresponding principal directions S = Z )\— X AI-
1=1
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Isotropic Hyperelastic Materials

1 do
P—FS—F T A A,
1 J¢ (Zl W) Vi )
S = )\_{))\ Ai'®Az 3 N 3
) i i 1 0o Ao
1= — T - — ! .
; \; O\ (FA)i ® A ; O\ bi®A;.
Si = i {)O P = ¢
)iz C)/\i / ! ON;
| ° 96
— JlFPT = JIF —(b; @ AT
o 7 (Zl ax, (b ®Ai)
In terms of the principal values ; - ;
30, do
— J ! “ " FA, @b, | =J! \i—— b; @b,
\ (; O\ © ) (; O\ © )

\

810,

i =J N\
7 O\,




Solid Mechanics: Non-linear elasticity

Recall: For isotropic Hyperelastic Materials:

We have the two constitutive Equations

=

[‘3?—@0_1 -+ (8(1) [ @) I — @0)

oL, ar, ol ol

in  o=J 'FSF'

4

O O O
52J1<@m) I+< +I(c) )c

(')13((3) C)Il((f) (_)IQ(C)

oD
Ol>(c)

—)

When the energy function of a certain material is known, the
constitutive response is established by one of the two relations.
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Incompressible Hyperelastic

Isotropic Materials The Constitutive Equations become
od 0P OP
The volume remains unchanged during S=-pC~'+2 (dfl + I ()IZ) I— 2EC
deformation called isochoric motion.
P 0D od .
. L ——pl +2( — +I;- c—2— ¢c?
Examples: rubbers, certain soft biological 014 0l ()Ig
tissues
Incompressibility condition:
dv B It is a constant, associated with pressure
J=— =X N3 =1 ,
dV (does not produce work) and is calculated
Or the third invariant of C or ¢ from equ”ibrium and BC.

Iz = M2\ 032 =1
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Incompressible Hyperelastic Isotropic Materials

Note: In isotropic materials, the principal
directions of stresses and the principal
stretches coincide

It is useful to express the principal
stresses as a function of the principal

stretches.

The equation

b Ob oD .
= —pI +2 + I —2—¢*
7= (dh 105) oI, ©

becomes

OP oD 4 b
i=—-p+2| - A2+ 03+ N3 N2—2— )\ i=1.2.3
op = —p+ (E’J11+( T + ){)12) T

With the conditions  .J = % = MAbd3 =1 I3=X\*X%A" =1
dV
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Incompressible Hyperelastic Isotropic Materials

Forms of Strain Energy Functions

The constitutive equation is specified once the energy function is known.

The mathematical conditions imposed until now are based on objectivity
and isotropy.

Other requirements can come from the type of boundary value
problem, the experimental configuration, and the unigueness of the solution.

In general, the explicit definition of the energy function is based on methodological

developments, experimental data, and/or the material microstructure.

For incompressible material [3 = )\12)\22)\32 — | the energy function is

expressed as follows

In practice a small number of
terms is required.

The material parameters are calculated
by detailed experimentation and carful
identification.

The larger the number of terms the
process becomes more difficult.

A

8. 9]

i,j=0

QI 1) = Y Cij(Iy —3)'(Ia = 3)7 .
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Incompressible Hyperelastic Isotropic Materials

Forms of Strain Energy Functions

Two simple forms of the energy function Mooney-Rivlin Strain Energy Function

(I)(Il.fg) = leg(fl — 3) -+ C?{]l(fg — 3)

D Il IQ Z (ng ) (IZ — )

A 4

1,j=0 Important in the development of non-linear

elasticity
(good for stretch ratios up to 4)

\ 4
Neo-Hookean model

(I)(Il) — C-Tlg(Il — 3)

_ —— C-Tl[] — '}?..IZJB'T
The model has its origin in the . .
statistical theory of rubber elasticity. — n: number of polymer chains per unit volume

(good for stretch ratios less than 2) kB :Boltzmann’s constant

T : absolute temperature
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Incompressible Hyperelastic Isotropic Materials

1

1

- Od
A2 ) \ o1,

+ A

0P | 5 0P
A2N2 )\ ol POl

)

, O
Lol

Example: simple stress states 5
1:Biaxial stretch
Ty = 2<A§
We have two independent stretches A1. A2
Fro the incompressibility condition
" As = ATTAYT |
J = — — XA doda = 1 | 1 0D

Stresses 01, 090 #0, 03 =10

A2+ A2 0O

= 2— — + _
\N2\3 014 AN Ol

I

Introduce g3 =0 in| g; = —p + 2 (

oD
0l

+ (AT + A3+ 23)

oD
0l

)Af—?

oD
015

A4
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Incompressible Hyperelastic Isotropic Materials

Example: simple stress states

2: Equibiaxial Stretch _ 9 )\z_i @ )\2 oD
7 ( ) \on T an )

We have 0; = 0o = 0,03 = 0.

and }\1:}\2:)\

.1 ob 0D
—  2( N2 — A3
7 ( 1 A%)@) (c")fl 2&)12)

] 1 OP oD
o= 902 _ 4 )\3C .
72 ( 2 A%A%) (5)11 - 15)12)
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Incompressible Hyperelastic Isotropic Materials

Example: simple stress states

3: Uniaxial Stretch - —9[)\2_ 1 ‘1_')‘1"’ n 1 ifﬁl’
A \OI; A Ol

Wehave A\1 = \,and Ay = A3 = \L/2

Jd1 — 0 » 0'2:{3"3:0
; 1 ob 0D
=  2( A\ — A\
7 ( ! A%)@) (c")fl 2&)12)

= 1 OP HP
o= 902 _ 4 )\3C .
72 ( 2 A%A%) (5)11 - 15)12)
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon

Q

Fig. 6.3 Inflation of a balloon: (a) geometry and (b) boundary conditions

Based on the spherical symmetry we have

{'}'1:{'}'2:0',(_}'3:0.

From equilibrium
€
?r?*z-p?; = 2nrec—— pi =2-0
-

Stretch ratio

A=r71/R
Incompressibility condition
2 2 € 1
dr<e = 4w R4¢; S
€4 AZ
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon

Fig. 6.3 Inflation of a balloon: (a) geometry and (b) boundary conditions

Neo-Hookean model

Stresses
1 8L,
=92 N2 — = 2C

4 ( A ) oI, H (

Pressure |
_ ., €

pi = 2S5 pi(A) = 4C10— ~
r

R A
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Incompressible Hyperelastic Isotropic Materials
C-Ylo = 8@/6)11

. Mooney-Rivlin model ~ _ . :
Example: Inflation of a Balloon Cop = 09/01I5

Stresses
A=r71/R 1 1,
'/ o= 2()\2 — )\4) (Clo + )\2601)
n :C? C Pressure
b; r
. € 1 1
R T J pﬁ(/\) — —lClGE X (1 — )\6) (1 + '?;-‘)\2)

with 1) = -’TUI/CIU

Fig. 6.3 Inflation of a balloon: (a) geometry and (b) boundary conditions
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Incompressible Hyperelastic Isotropic Materials

Example: Inflation of a Balloon
Mooney-Rivlin Model

7
= 05 | = B 1 1 72
S [J,lf)—_ IJi()\) =4C IOE X (1 — XB) (1 + ??)\ )

T~
— 0,14
g O Neo-Hookean Model
0,10 - ( i
0,08 - pi(A) =4C1 0= =1 - —
I 0,15 %( ) R A AY

0,04—_ Neo-Hookean Model 77 = 0
0,02

Fig. 6.4 Normalized pressure in a balloon as a function of different values of n
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Incompressible Hyperelastic Isotropic Materials

Forms of Strain Energy Functions
It reduces to Neo-Hookean with

Ogden’s Model N=1a;=2 Ci=p/2

N
O(A1. A2, A3) = Z ;— (AT* + NS+ AG —3) We obtain the Moonley-Rivlin with

«; and j¢; are constants obtained N =2 a, =2 ay=—-2,

From experimental data and identification Cio = p1/2, Co1 = —pin/2

This model gives very good results for when N33
(or higher).
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